Step of Proof: eq_int_eq_true_elim
9,38
postcript
pdf
Inference at
*
1
1
1
I
of proof for Lemma
eq
int
eq
true
elim
:
1.
i
:
2.
j
:
3. ff = tt
4.
(
i
=
j
)
i
=
j
latex
by ((((SwapEquands 3)
CollapseTHEN (AssertLemma `btrue_neq_bfalse` []))
)
CollapseTHEN (
C
(Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n)) (first_tok :t) inil_term)))
latex
C
.
Definitions
False
,
P
Q
,
A
Lemmas
btrue
neq
bfalse
origin